

MEREDELL FARM ANNUAL MONITORING REPORT YEAR 6 OF 7

EEP Project #247 Randolph County, North Carolina Completed Construction: 2008 Submitted January 2014

Submitted to:

NCDENR-EEP 1652 Mail Service Center Raleigh, NC 27699-1652

Monitoring Firm:

1025 Wade Avenue Raleigh, NC 27605 Phone (919) 789-9977 Project Manager: Philip Beach pbeach@sepiengineering.com

EXECUTIVE SUMMARY

The Meredell Farm Stream Restoration project falls within USGS hydrologic unit 03030003. The project lies within a rural setting that includes agricultural, forested, and low-density residential areas. The project is located on Koopman Dairies (formerly Meredell Farm), a small farm operation that includes dairy and row crop production. Prior to restoration work, the project stream had been historically destabilized through channelization and hoof-shear.

Baker Engineering designed the restoration plans and restoration was completed in 2008. Sepi Engineering & Construction (SEPI) began the stream and riparian monitoring for Meredell Farms in October 2013.

The goal of the project is to restore and improve the stream channel and riparian buffer form and function on-site through the following objectives:

- Restore 3,865 LF of channel dimension, pattern and profile.
- Enhance 4,704 LF of channel dimension, and/or profile.
- Preserve 5,136 LF of stream channel and riparian buffer.
- Improve floodplain functionality by matching floodplain elevation with bankfull stage.
- Establish native stream bank and floodplain vegetation in the permanent conservation easement.
- Improve the water quality in the Upper Cape Fear River watershed by fencing cattle out of the stream and reducing bank erosion.

SEPI performed stream and riparian monitoring in the fall of 2013 for this Year 6 Monitoring Report, which is discussed in greater detail below.

Vegetation Assessment

Vegetation monitoring in Year 6 included visual assessment of the riparian zone and buffer mitigation areas to update the Current Conditions Plan View (CCPV) and Carolina Vegetation Survey (CVS) assessment of 12 vegetation plots. SEPI observed areas of concern that based on visual assessment did not appear to be meeting riparian zone success criteria of 260 stems per acre after 6 years. These observed conditions are reflected in the CCPV figures (Figures 2-9) within this report and briefly discussed below.

- The conservation easement area surrounding stream reaches UT1, UT2, M1, and UT5 continue to have large areas that lack significant counts of visible planted woody stems. It was visually observed that the vegetation established within the buffer and outside of the bankfull bench area primarily consists of grasses and herbaceous species. Good vegetation growth was primary observed within the bankfull bench area for each of these reaches.
- The lower M1 area (downstream of the stream crossing) continues to have a significant invasive species population consisting of Chinese privet and cattails.
- UT3 and UT4 also had instances of tree-of-heaven and Chinese privet throughout the reaches.
- UT5 had instances of agricultural squash growing in the buffer.
- The site continues to be free of encroachments to the easement.

Detailed data collected from the CVS assessment of the 12 vegetation plots can be found in **Appendix C** of this report. Ten of the 12 veg plots exceeded the riparian zone success criteria of 260 stems/acre after 6 years, and 5 of the 11 buffer vegetation plots exceeded the buffer mitigation success criteria of 320 stems/acre after 6 years. The total average planted stem density for all twelve veg plots is 435 stems/acre for Year 6 Monitoring.

Invasive species were treated on reaches UT1, UT2, UT3, UT4, and M1 in August 2012. Approximately 22 acres were treated. The target species of concern included *Ailanthus altissima* and *Ligustrum sinense*. Supplemental plantings were performed on reaches UT1, UT2, and M1 in August 2012. A total of 4500 woody stems were planted. Detailed data and maps on supplemental plantings and invasive species control efforts can be found in **Appendix C**.

Stream Assessment

Year 6 stream channel monitoring included a visual assessment of the stream channel and in-stream structures to update the Current Conditions Plan View (CCPV) and collection of geomorphic profile data. Visual observations of the stream channel conditions were conducted to determine if the project is establishing toward the stream success criteria outlined in the approved Restoration Plan (2004). These goals are outlined below:

- Longitudinal Profile:
 - "The longitudinal profile data should show that the bedform features are remaining stable and are not aggrading or degrading. The pools should remain deep with flat water surface slopes and the riffles should remain steep and shallow."

The visual assessment and geomorphic data collection completed for the site indicated that approximately 95% of the project reaches were performing within established success criteria ranges. The remaining 5% were exhibiting impacts such as headcuts and stream structure instabilities. The observed stream channel conditions are reflected in the CCPV figures (**Figures 2-9**) within this report and briefly discussed below.

- Two instream structures (Stations M1: 303+25 and 305+00) had flow going between the sill and arm boulders, but no further instability was observed as a result of the conditions
- One instream structure (Station M1: 303+75) had approximately 15% bank erosion
- Six instances of headcut were observed
- There continues to be a small area of concentrated overland runoff through the buffer on the UT3a near Station 10+50 that is causing erosion to the stream bank
- Two areas of split channel flow were identified along the existing stream at the upstream and downstream section of UT5

Geomorphic monitoring included collection of 4 longitudinal profile segments. Channel profile stability assessment includes the entire restored length of the project. Refer to **Appendix D** contained herein for detailed results of the longitudinal profile data collection.

Site Hydrology

Year 6 hydrologic bankfull indicators were collected during monitoring field visits. These indicators include collection of visually observed wracklines at, or above, the bankfull elevation and recordation of the crest gage height located at Station 30+700 on reach M1.

- Wracklines were noted above the bankfull bench and within the floodplain during the initial site assessment field visit conducted on October 30, 2013. Refer to photograph SP2 within Appendix B of this report.
- A crest gage reading of 3.6 feet was recorded during the annual monitoring field visit conducted on October 30, 2013. The baseline bankfull design maximum depth range for reach M1 is 1.0 foot (min) to 1.3 feet (max); therefore, the crest gage reading indicates that a bankfull event had occurred onsite. Refer to photograph SP1 within **Appendix B** of this report.

Summary information/data related to the occurrence of such things as beaver or encroachment, and statistics related to performance of various project and monitoring elements can be found in the tables and figures in the report appendices. Narrative background and supporting information formerly found in these reports can be found in the Baseline Monitoring Report (formerly Mitigation Plan) and in the Mitigation Plan (formerly the Restoration Plan) documents available on EEP's website. All raw data supporting the tables and figures in the appendices are available from EEP upon request.

METHODOLOGY

The following methods were utilized during the Year 6 monitoring for data collection and postprocessing:

- Geomorphic topographic data collections were performed in the field using a surveygrade GPS such that each survey point has three-dimensional coordinates, and is georeferenced (NAD83-State Plane Feet – FIPS 3200).
- Longitudinal stationing was developed using the as-built survey thalweg as a baseline.
- The CVS Level 2 methodology was utilized for the vegetation plot data collection.
- Permanent cross-sectional data was not required for this monitoring year.
- Particle size distribution was not required for this monitoring year.

REFERENCES

Buck Engineering, PC. 2004. Meredell Farms Stream Restoration Plan.

North Carolina Ecosystem Enhancement Program. November 2006. Content, Format and Data Requirements for EEP Monitoring Reports.

Rosgen, D.L. 1994. A Classification of Natural Rivers. Catena 22: 166-169.

Kimley-Horn and Associates, Inc. 2009. Meredell Farm Monitoring Report, Year 2 of 5.

Kimley-Horn and Associates, Inc. 2010. Meredell Farm Monitoring Report, Year 3 of 5.

Kimley-Horn and Associates, Inc. 2011. Meredell Farm Monitoring Report, Year 4 of 5.

Kimley-Horn and Associates, Inc. 2012. Meredell Farm Monitoring Report, Year 5 of 5.

U.S. Department of Army, Corps of Engineers. 2003. Stream Mitigation Guidelines. http://www.saw.usace.army.mil/wetlands/Mitigation/stream_mitigation.html Appendix A Project Vicinity Map and Background Files

				Т	able 1. P Merec	roject Components ar lell Farm Stream Res	nd Mitigation toration Site/2	Credits 247	6						
						Mitigation Cre	dits								
	Stre	eam		Riparian Wetland	d	Non-riparian Wetla				Buffer	N	Nitrogen Nutrient Offset		Phosphorous Nutrient Offset	
Туре	R	RE	R		RE	I	٤	R	Æ						
Totals	5785.5	5134								570000					
						Project Compo	nents								
Project Component -or- Reach ID St		Stationing	g/Location		Existing Foo	tage/Acreage		Approa (PI, PII e	ch tc.) Rest Ec	storation -or- storation uivalent	Restoration Fo Acreag	storation Footage or Acreage			
	Ut 1a 10+0			- 21+00		10	50				EI	1100		1.5:1	
	Ut 1b		21+00 -	- 28+80		57	71				R	780		1:1	
	Ut 2a		10+00 -	- 18+00		80)0				EI	800		1.5:1	
	Ut 2b		18+00 -	- 20+94		20)6 02				R	294		1:1	
	MI Uk 2-		10+00	- 32+54		21	03		1/11		K	2254		1:1	
	Ut 3h		10+00 -	- 16+50 - 20±79		40	36				P	050 429		1.1	
	Ut 4		10+00 -	- 19+13		836					EII	913		2.5:1	
	Ut 5		10+00 -	- 20+75		10	75				EII	1075		2.5:1	
	M2		N	A		13	98				Р	1398		5:1	
5	Sandy Creek 1		N	A		10	33				Р	1033		5:1	
5	Sandy Creek 2		N	A		80)1				Р	801		5:1	
5	Sandy Creek 3		N	A		19	02				Р	1902		5:1	
						Component Sum	mation								
Restora	tion	Stream			Riparian Wetland Non-ripar			n-ripari	an Wetland		Buffer		Upla	ind	
Leve	:1	(linear fe	et)	D: .	(ac	res)	_	(ac	eres)		(square fe	et)	(acr	es)	
Postoratio		2757		Riverine		Non-Riverine					272.050				
Enhancem	ent	3737									8 750				
Enhancem	ent I	800									0,750				
Enhancem	ent II	3738													
Creation															
Preservatio	on	5134													
High Qual	ity														
						BMP Elemer	ıts								
Element		Location		Purpose	/Function					N	otes				
				1											
BMP Elen	nents atomtion Cally SI	- Cond Filton 9	W - Stormanistan W	Vatland: WDD = V	Wat Datas	tion Dond: DDD = Dm	Dotontion Dor	. J. ES -	- Filton Stains	S - Crosse	Curalar I C	- I aval Sama de	NI NI	lonut	
$DK = B10\Gamma$	elention Cell; SI	- Sand Fitter; S	w – Stormwater V	venand; w $DP = V$	wet Deter	uon Pona; DDP = Dry	Detention Poi	iu; FS =	- ritter Strip;	5 = Grasse	i Swale; LS	- Level Spreade	$n_1, n_1 = N_2$	nural	

Infiltration Area; FB = Forested Buff

Table 2. Project Activity and Reporting History Meredell Farm Stream Restoration Site/247

Elapsed Time Since Grading Complete: 5 yrs 8 months Elapsed Time Since Planting Complete: 5 yrs 7 Months Number of Reporting Years¹: 6

Activity or Deliverable	Data Collection Complete	Completion or Delivery
Restoration Plan		Sept-04
Final Design – Construction Plans		Jan-07
Construction	NA	Mar-08
Containerized, bare root and B&B plantings	NA	Feb-08
As-built Mapping	Nov-07	Apr-08
Year 1 Monitoring (baseline)*	Nov-08	Jun-09
Year 2 Monitoring	Nov-09	Apr-10
Year 3 Monitoring	Oct-10	Mar-11
Year 4 Monitoring	Oct-11	Jan-12
Year 5 Monitoring	Oct-12	Feb-13
Year 6 Monitoring	Nov-13	Nov-13

*As-built plan view survey performed by Level Cross Surveying, PLLC. (No As-built monitoring data was collected or reported).

Bolded items are examples of those items that are not standard, but may come up and should be included

Non-bolded items represent events that are standard components over the course of a typical project.

The above are obviously not the extent of potential relevant project activities, but are just provided as example as part of this exhibit.

If planting and morphology are on split monitoring schedules that should be made clear in the table

1 = Equals the number of reports or data points produced <u>excluding</u> the baseline

	Table 3. Project Contacts Table
Mere	dell Farm Stream Restoration Site/247
Designer	Buck Engineering, PC
	8000 Regency Parkway, Suite 200, Cary, NC 27511
Primary project design POC	Kevin Tweedy, P.E. (919) 463-5488
Construction Contractor	RiverWorks, Inc.
	8000 Regency Parkway, Suite 200, Cary, NC 27511
Construction contractor POC	(919) 459-9001
Survey Contractor	Level Cross Survey, PLLC
	668 Marsh Country Lane, Randleman, NC 27317
Survey contractor POC	(336) 495-1713
Planting Contractor	
Planting contractor POC	
Seeding Contractor	
Contractor point of contact	
Seed Mix Sources	
Nursery Stock Suppliers	
Monitoring Performers	SEPI Engineering & Construction, Inc.
	1025 Wade Avenue, Raleigh, NC 27605
Stream Monitoring POC	Philip Beach, PWS
Vegetation Monitoring POC	Kim Hamlin, Project Scientist
Wetland Monitoring POC	

Т	able 4. Proj	ect Attribute	Table				
Merede	ell Farm Stre	eam Restorat	ion Site/247				
Project County	Randolph						
Physiographic Region	Piedmont						
Ecoregion	Carolina Sla	te Belt					
Project River Basin	Cape Fear						
USGS HUC for Project (14 digit)	0303000302	0010					
NCDWQ Sub-basin for Project	03-06-09						
Within extent of EEP Watershed Plan?	no						
WRC Hab Class (Warm, Cool, Cold)	warm						
% of project easement fenced or demarcated	100						
Beaver activity observed during design phase?	No						
Resto	ration Com	ponent Attrik	oute Table				
	M1	M2	UT1	UT2	UT3	UT4	UT5
Drainage area (acres)	168	265	64	67	148	56	59
Stream order	2	2	1	1	1	1	1
Restored length (feet)	2254	1398	1880	1095	1351	913	1075
Perennial or Intermittent	Р	Р	Р	Р	Р	Р	Р
Watershed type (Rural, Urban, Developing etc.)	R	R	R	R	R	R	R
Watershed LULC Distribution (e.g.)							
Residential	U	U	U	U	U	U	U
Ag-Row Crop	U	U	U	U	U	U	U
Ag-Livestock	U	U	U	U	U	U	U
Forested	U	U	U	U	U	U	U
Etc.	U	U	U	U	U	U	U
Watershed impervious cover (%)	U	U	U	U	U	U	U
NCDWQ AU/Index number							
NCDWQ classification	WS-III	WS-III	WS-III	WS-III	WS-III	WS-III	WS-III
303d listed?	No	No	No	No	No	No	No
Upstream of a 303d listed segment?	No	No	No	No	No	No	No
Reasons for 303d listing or stressor	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Total acreage of easement				49.8			
Total vegetated acreage within the easement				49.8			
Total planted acreage as part of the restoration	8.3	0	6.2	3	2.2	0	0
Rosgen classification of pre-existing	G4c	U	G4	B5-1/E5-1	B4c	G5	E5
Rosgen classification of As-built	U	U	U	U	U	U	U
Valley type	U	U	U	U	U	U	U
Valley slope	U	U	U	U	U	U	U
Valley side slope range (e.g. 2-3.%)	U	U	U	U	U	U	U
Valley toe slope range (e.g. 2-3.%)	U	U	U	U	U	U	U
Cowardin classification	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Trout waters designation	No	No	No	No	No	No	No
Species of concern, endangered etc.? (Y/N)	Y	Ý	Y	Ý	Y	Y	Y
Dominant soil series and characteristics							
Series	U	U	U	U	U	U	U
Depth	U	U	U	U	U	U	U
Clay%	U	U	U	U	U	U	U
K	U	U	U	U	U	U	U
Т	U	U	U	U	U	U	U

Use N/A for items that may not apply. Use "-" for items that are unavailable and "U" for items that are unknown

Appendix B Visual Assessment Data

Date	Project Number	Figure
11/27/2013	247	7

cosystem

Table 5.1 <u>Visual Stream Morphology Stability Assessment</u> Reach ID UT1 Assessed Length 640

Major Channel Category	Channel Sub-Category	Metric	Number Stable, Performing as Intended	Total Number in As-built	Number of Unstable Segments	Amount of Unstable Footage	% Stable, Performing as Intended	Number with Stabilizing Woody Vegetation	Footage with Stabilizing Woody Vegetation	Adjusted % for Stabilizing Woody Vegetation
1. Bed	1. Vertical Stability (Riffle and Run units)	 <u>Aggradation</u> - Bar formation/growth sufficient to significantly deflect flow laterally (not to include point bars) 			0	0	100%			
		2. <u>Degradation</u> - Evidence of downcutting			0	0	100%			
	2. Riffle Condition	1. <u>Texture/Substrate</u> - Riffle maintains coarser substrate	5	5			100%			
	3. Meander Pool Condition	 <u>Depth</u> Sufficient (Max Pool Depth : Mean Bankfull Depth <u>></u> 1.6) 	5	5			100%			
		 Length appropriate (>30% of centerline distance between tail of upstream riffle and head of downstrem riffle) 	5	5			100%			
	4.Thalweg Position	1. Thalweg centering at upstream of meander bend (Run)	5	5			100%			
		2. Thalweg centering at downstream of meander (Glide)	5	5			100%			
2. Bank	1. Scoured/Eroding	Bank lacking vegetative cover resulting simply from poor growth and/or scour and erosion			0	0	100%	0	0	100%
	2. Undercut	Banks undercut/overhanging to the extent that mass wasting appears likely. Does <u>NOT</u> include undercuts that are modest, appear sustainable and are providing habitat.			0	0	100%	0	0	100%
	3. Mass Wasting	Bank slumping, calving, or collapse			0	0	100%	0	0	100%
				Totals	0	0	100%	0	0	100%
3. Engineered Structures	1. Overall Integrity	Structures physically intact with no dislodged boulders or logs.	25	25			100%			
	2. Grade Control	Grade control structures exhibiting maintenance of grade across the sill.	25	25			100%			
	2a. Piping	Structures lacking any substantial flow underneath sills or arms.	25	25			100%			
	3. Bank Protection	Bank erosion within the structures extent of influence does <u>not</u> exceed 15%. (See guidance for this table in EEP monitoring guidance document)	25	25			100%			
	4. Habitat	Pool forming structures maintaining ~ Max Pool Depth : Mean Bankfull Depth ratio \geq 1.6 Rootwads/logs providing some cover at base-flow.	25	25			100%			

Table 5.2Visual Stream Morphology Stability AssessmentReach IDUT2Assessed Length350

Major Channel Category	Channel Sub-Category	Metric	Number Stable, Performing as Intended	Total Number in As-built	Number of Unstable Segments	Amount of Unstable Footage	% Stable, Performing as Intended	Number with Stabilizing Woody Vegetation	Footage with Stabilizing Woody Vegetation	Adjusted % for Stabilizing Woody Vegetation
1. Bed	1. Vertical Stability (Riffle and Run units)	 <u>Aggradation</u> - Bar formation/growth sufficient to significantly deflect flow laterally (not to include point bars) 			0	0	100%			
		2. <u>Degradation</u> - Evidence of downcutting			0	0	100%			
	2. Riffle Condition	1. <u>Texture/Substrate</u> - Riffle maintains coarser substrate	5	5			100%			
	3. Meander Pool Condition	 <u>Depth</u> Sufficient (Max Pool Depth : Mean Bankfull Depth ≥ 1.6) 	4	4			100%			
		 Length appropriate (>30% of centerline distance between tail of upstream riffle and head of downstrem riffle) 	4	4			100%			
	4.Thalweg Position	1. Thalweg centering at upstream of meander bend (Run)	3	3			100%			
		2. Thalweg centering at downstream of meander (Glide)	3	3			100%			
2. Bank	1. Scoured/Eroding	Bank lacking vegetative cover resulting simply from poor growth and/or scour and erosion			0	0	100%	0	0	100%
	2. Undercut	Banks undercut/overhanging to the extent that mass wasting appears likely. Does <u>NOT</u> include undercuts that are modest, appear sustainable and are providing habitat.			0	0	100%	0	0	100%
	3. Mass Wasting	Bank slumping, calving, or collapse			0	0	100%	0	0	100%
				Totals	0	0	100%	0	0	100%
3. Engineered Structures	1. Overall Integrity	Structures physically intact with no dislodged boulders or logs.	15	15			100%			
	2. Grade Control	Grade control structures exhibiting maintenance of grade across the sill.	15	15			100%			
	2a. Piping	Structures lacking any substantial flow underneath sills or arms.	15	15			100%			
	3. Bank Protection	Bank erosion within the structures extent of influence does <u>not</u> exceed 15%. (See guidance for this table in EEP monitoring guidance document)	15	15			100%			
	4. Habitat	Pool forming structures maintaining ~ Max Pool Depth : Mean Bankfull Depth ratio \geq 1.6 Rootwads/logs providing some cover at base-flow.	15	15			100%			

Table 5.3 Visual Stream Morphology Stability Assessment Reach ID M1 Assessed Length 3200

Major Channel Category	Channel Sub-Category	Metric	Number Stable, Performing as Intended	Total Number in As-built	Number of Unstable Segments	Amount of Unstable Footage	% Stable, Performing as Intended	Number with Stabilizing Woody Vegetation	Footage with Stabilizing Woody Vegetation	Adjusted % for Stabilizing Woody Vegetation
1. Bed	1. Vertical Stability (Riffle and Run units)	 <u>Aggradation</u> - Bar formation/growth sufficient to significantly deflect flow laterally (not to include point bars) 			0	0	100%			
		2. <u>Degradation</u> - Evidence of downcutting			0	0	100%			
	2. Riffle Condition	1. <u>Texture/Substrate</u> - Riffle maintains coarser substrate	25	25			100%			
	3. Meander Pool Condition	1. <u>Depth</u> Sufficient (Max Pool Depth : Mean Bankfull Depth ≥ 1.6)	23	23			100%			
		 Length appropriate (>30% of centerline distance between tail of upstream riffle and head of downstrem riffle) 	23	23			100%			
	4.Thalweg Position	1. Thalweg centering at upstream of meander bend (Run)	26	26			100%			
		2. Thalweg centering at downstream of meander (Glide)	26	26			100%			
2. Bank	1. Scoured/Eroding	Bank lacking vegetative cover resulting simply from poor growth and/or scour and erosion			0	0	100%	0	0	100%
	2. Undercut	Banks undercut/overhanging to the extent that mass wasting appears likely. Does <u>NOT</u> include undercuts that are modest, appear sustainable and are providing habitat.			0	0	100%	0	0	100%
	3. Mass Wasting	Bank slumping, calving, or collapse			0	0	100%	0	0	100%
				Totals	0	0	100%	0	0	100%
3. Engineered Structures	1. Overall Integrity	Structures physically intact with no dislodged boulders or logs.	48	48			100%			
	2. Grade Control	Grade control structures exhibiting maintenance of grade across the sill.	48	48			100%			
	2a. Piping	Structures lacking any substantial flow underneath sills or arms.	46	48			96%			
	3. Bank Protection	Bank erosion within the structures extent of influence does <u>not</u> exceed 15%. (See guidance for this table in EEP monitoring guidance document)	47	48			98%			
	4. Habitat	Pool forming structures maintaining ~ Max Pool Depth : Mean Bankfull Depth ratio \geq 1.6 Rootwads/logs providing some cover at base-flow.	48	48			100%			

Planted Acreage ¹	33.7					
Vegetation Category	Definitions	Mapping Threshold	CCPV Depiction	Number of Polygons	Combined Acreage	% of Planted Acreage
1. Bare Areas	Very limited cover of both woody and herbaceous material.	0.1 acres	Pattern and Color	0	0.00	0.0%
2. Low Stem Density Areas	Woody stem densities clearly below target levels based on MY3, 4, or 5 stem count criteria.	0.1 acres	Pattern and Color	7	13.52	40.1%
			Total	7	13.52	40.1%
3. Areas of Poor Growth Rates or Vigor	Areas with woody stems of a size class that are obviously small given the monitoring year.	0.25 acres	Pattern and Color	6	1.26	3.7%
		Cu	mulative Total	13	14.78	43.9%

Vegetation Condition Assessment

Easement Acreage	55.6					
Vegetation Category	Definitions	Mapping Threshold	CCPV Depiction	Number of Polygons	Combined Acreage	% of Easement Acreage
4. Invasive Areas of Concern ⁴	Areas or points (if too small to render as polygons at map scale).	1000 SF	Pattern and Color	7	0.87	1.6%
5. Easement Encroachment Areas ³	Areas or points (if too small to render as polygons at map scale).	none	Pattern and Color	0	0.00	0.0%

1 = Enter the planted acreage within the easement. This number is calculated as the easement acreage minus any existing mature tree stands that were not subject to supplemental planting of the understory, the channel acreage, crossings or any other elements not directly planted as part of the project effort.

2 = The acreage within the easement boundaries.

3 = Encroachment may occur within or outside of planted areas and will therefore be calculated against the overall easement acreage. In the event a polygon is cataloged into items 1, 2 or 3 in the table and is the result of encroachment, the associated acreage should be tallied in the relevant item (i.e., item 1,2 or 3) as well as a parallel tally in item 5.

4 = Invasives may occur in or out of planted areas, but still within the easement and will therefore be calculated against the overall easement acreage. Invasives of concern/interest are listed below. The list of high concern spcies are those with the potential to directly outcompete native, young, woody stems in the short-term (e.g. monitoring period or shortly thereafter) or affect the community structure for existing, more established tree/shrub stands over timeframes that are slightly longer (e.g. 1-2 decades). The low/moderate concern group are those species that generally do not have this capacity over the timeframes discussed and therefore are not expected to be mapped with regularity, but can be mapped, if in the judgement of the observer their coverage, distribution relative to native biomass, and the practicality of treatment. For example, even modest amounts of Kudzu or Japanese Kndweed are based on the practicality of treatment. For example, even modest amounts of Kudzu or Japanese Kndweed are botential impacts of treating extensive amounts of ground cover. Those species will not likely trigger control because of the limited capacities to impact they know as one that was found to be helpful for symbolzing invasives polygons, particularly for situations where the condition for an area of discret, dense patches will do course be mapped as polygons. The symbology scheme below was one that was found to be helpful for symbolzing invasives polygons, particularly for situations where the condition for an area is somewhere between isolated specimens and depace patches. In any case, the point or polygon/area feature can be symbolized to describe things like high or low concern and species can be listed as a map inset, in legend items if the number of species are finited or in the narrative section of the executive summary.

Table 6

Appendix C Vegetation Plot Data

							Та	ble 7. V	egetation Plot Criteria	Attainm	nent						
	MY1		MY2	2	MY3		MY4	ļ		Y5		MY6					
Vegetation Plot ID	Vegetation Survival Threshold Met?	Reach Mean	Vegetation Survival Threshold Met?	Reach Mean	Vegetation Survival Threshold Met?	Reach Mean	Vegetation Survival Threshold Met?	Reach Mean	Stream Riparian Zone Vegetation Survival Threshold (260 stems/acre) Met?	Reach Mean	Buffer Mitigation Vegetation Survival Threshold (320 stems/acre) Met?	Reach Mean	Stream Riparian Zone Vegetation Survival Threshold (260 stems/acre) Met?	Reach Mean	Buffer Mitigation Vegetation Survival Threshold (320 stems/acre) Met?	Reach Mean	
247-01-0001	Y	100%	Y	50%	Y	50%	Y	100%	Ν	50%	Ν	0%	Y	100%	Ν	50%	
247-01-0002	Y	10070	N	5070	Ν	5070	Y	10070	Y	3070	Ν	070	Y	10070	Y	2070	
247-01-0003	Y	100%	Y	100%	Y	100%	Y	100%	Ν	50%	Ν	50%	Y	100%	Ν	0%	
247-01-0004	Y	10070	Y	10070	Y	10070	Y	10070	Y	3070	Y	3070	Y	10070	Ν	070	
247-01-0005	Y		Y		Y		N		Ν		N		Y		Y		
247-01-0006	Ν		Ν		Ν		Ν		Ν		Ν		Y		Y		
247-01-0007	Ν		Ν		Ν		Ν		Ν		Ν		Y		Y		
247-01-0008	Y	500/	Y	500/	Y	200/	Y	200/	Ν	120/	Ν	0.00/	Y	750/	Ν	570/	
247-01-0009	Ν	30%	Ν	30%	Ν	3070	Ν	30%	Ν	1370	Ν	0%	Ν	/370	Ν	3770	
247-01-0010	Ν		Ν	N N Y Y	Ν		Ν		Ν		Ν		Ν		Ν		
247-01-0011	Y		Y		Y	N	Ν		Y		Y						
247-01-0012	Y		Y		Y		Y		Y		N/A		Y		N/A		

	Table 8. CVS Vegetation Plot Metadata							
	Meredell Farm Stream Restoration Site/ 247							
Report Prepared By	Kim Hamlin							
Date Prepared	11/20/2013 10:54							
database name	cvs-eep-entrytool-v2.3.1.mdb							
database location	G:\Environmental\NCEEP Meredell Farms SMS\MY06\CVS							
computer name	W93							
file size	61476864							
DESCRIPTION OF WORKSHEE	IS IN THIS DOCUMENT							
Metadata	Description of database file, the report worksheets, and a summary of project(s) and project data.							
Proj, planted	Each project is listed with its PLANTED stems per acre, for each year. This excludes live stakes.							
	Each project is listed with its TOTAL stems per acre, for each year. This includes live stakes, all planted							
Proj, total stemsstems, and all natural/volunteer stems.								
Plots List of plots surveyed with location and summary data (live stems, dead stems, missing, etc.).								
Vigor	Frequency distribution of vigor classes for stems for all plots.							
Vigor by Spp Frequency distribution of vigor classes listed by species.								
	List of most frequent damage classes with number of occurrences and percent of total stems impacted by							
Damage	each.							
Damage by Spp	Damage values tallied by type for each species.							
Damage by Plot	Damage values tallied by type for each plot.							
	A matrix of the count of PLANTED living stems of each species for each plot; dead and missing stems are							
Planted Stems by Plot and Spp	excluded.							
PROJECT SUMMARY								
Project Code	247							
project Name	Meredell Farm							
Description	Riparian Buffer Restoration							
River Basin	Cape Fear							
length(ft)	9601							
stream-to-edge width (ft)	100							
area (sq m)	201,533							
Required Plots (calculated)	12							
Sampled Plots	12							

												(Current Plo	t Data (N	1Y6 2013)																		Annua	l Means					
			E247-01-0	0001	E247-01	-0002	E24	7-01-000	3 E	247-01-0004	E247-01-0005	E24	7-01-0006	E	247-01-00	07	E247-01-0008	E247	01-0009	Ð	E247-0	1-0010	E247-01-001	11	E247-01-0	012	MY6	(2013)		MY5 (2	2012)	MY4 (2011)	MY	/3 (2010	D)	MY2	(2009)	MY1 (2009)
Scientific Name	Common Name	Species Type	PnoLS P-all	Т	PnoLS P-all	Т	PnoLS	P-all T	Pnol	S P-all T	PnoLS P-all T	PnoLS	P-all T	PnoL	S P-all 1	r F	PnoLS P-all T	PnoLS P	-all T	Pn	oLS P-al	II T	PnoLS P-all T	F	PnoLS P-all	TF	PnoLS P-	all T	Pnc	DLS P-all	ΙT	PnoLS P-a	II T	PnoLS F	P-all 1	г р	noLS P-r	II T	PnoLS P-all T
Acer negundo	boxelder	Tree																							1 1	1	1	1	1										
Acer rubrum	red maple	Tree																3					6 6	9	4 4	25	10	10	37	12 1	12 12	12	12 12	10	10	10	11	11 1	1
Asimina triloba	pawpaw	Tree										2	2	2													2	2	2	2	2 2	1	1 1	1	1	1			1 1
Betula nigra	river birch	Tree			1	1	1 4	4	4	1 1	1 1 1	2					4 4	4							2 2	2	13	13	14	14 1	14 14	13	13 13	12	12	12	10	10 1	0 12 12 1
Carya	hickory	Tree																																1	1	1	2	2	2
Chamaecyparis thyoides	Atlantic white cedar	Tree									3 3	3 3	3	3													6	6	6	9	9 9								
Cornus amomum	silky dogwood	Shrub									1 1	4 1	1	1											1	1	2	3	6	4	5 5		1 1		1	1		2	2 2
Corylus americana	American hazelnut	Shrub								4 4	4																4	4	4	4	4 4	5	5 5	5	5	5	10	10 1	0 11 11 1
Diospyros virginiana	common persimmon	Tree	1 1	2							2 2	4		1	3 3	3							1 1	1			7	7	11	6	6 6	5	5 5	6	6	6	12	12 1	2 15 15 1
Fraxinus	ash	Tree																																					1 1
Fraxinus pennsylvanica	green ash	Tree																												1	1 1								
Hamamelis virginiana	American witchhazel	Tree	2 2	2 2			1	1	1	3 3	3																6	6	6	6	6 6	1	1 1	1	1	1	3	3	3 3 3
Juglans nigra	black walnut	Tree										1			2 2	2					3	3 3	2 2	2			7	7	8	10 1	10 10	5	5 5	4	5	5	6	6	6 2 2
Juniperus virginiana	eastern redcedar	Tree		5			5		2			2		19	2 2	3		4								5	2	2	45	2	2 2								
Ligustrum sinense	Chinese privet	Exotic																								10			10										
Lindera benzoin	northern spicebush	Shrub															1 1	1							2 2	2	3	3	3	3	3 3	3	3 3	2	2	2	5	5	599
Liquidambar styraciflua	sweetgum	Tree										1 1	1	3			1 1	1									2	2	5	3	3 3	1	1 1						
Liriodendron tulipifera	tuliptree	Tree									2 2	4 1	1	2	1 1	2							2 2	2	10 10	10	16	16	20	16 1	16 16	13	13 13	10	10	10	8	8	8 8 8
Oxydendrum arboreum	sourwood	Tree					1	1	1																		1	1	1	1	1 1								
Pinus	pine	Tree																												1	1 1								
Pinus taeda	loblolly pine	Tree			1	1	2								1 1	1											2	2	3										
Platanus occidentalis	American sycamore	Tree	3 3	3 3	3	3	3					1	1	1	2 2	2	2 2 2	2 1	1	1	1	1 1			3 3	4	16	16	17	17 1	17 17	14	14 14	13	13	13	14	14 1	4 12 12 1
Populus deltoides	eastern cottonwood	Tree																																1	1	1	1	1	1 3 3
Quercus alba	white oak	Tree																																			1	1	1
Quercus michauxii	swamp chestnut oak	Tree			1	1	1			2 2	2	1	1	1									2 2	2			6	6	6	6	6 6	6	6 6	5	5	5	8	8	8 7 7
Quercus pagoda	cherrybark oak	Tree		1						1 1	1				1 1	1											2	2	3	4	4 4	2	2 2	1	1	1	3	3	3 4 4
Quercus phellos	willow oak	Tree		1	3	3	3																				3	3	4	3	3 3	3	3 3	3	3	3	4	4	4 4 4
Salix nigra	black willow	Tree	1	2																								1	2		1 1								
Salix sericea	silky willow	Shrub	6 16	5 16			8	8	9								2 3	3	1	1			2 4	4			18	32	33	23 3	39 39	18	33 33	18	31	31	19	49 4	9 1 33 3
Sambucus canadensis	Common Elderberry	Shrub		2										1								15							18				2 2	1	2	2		2	2 2
Ulmus	elm	Tree																																1	1	1	3	3	3 3 3
Ulmus rubra	slippery elm	Tree																								2			2										
		Stem count	12 23	34	9	9 1	5 14	14	17 1	.1 11 1	1992	1 10	10	34 1	2 12	14	10 11 1	.8 1	2	2	4	4 19	15 17	20	22 23	62	129	145	267 1	147 16	65 165	102 1	120 120	95	111	111	120	154 15	4 96 132 13
		size (ares)	1		1	•		1		1	1		1		1		1		1		. 1		1		1			12		12	2	1	2		12		1	2	12
		size (ACRES)	0.02		0.0	2		0.02		0.02	0.02		0.02		0.02		0.02	(0.02		0.0)2	0.02		0.02		C).30		0.3	30	0.3	30		0.30		0	30	0.30
		Species count	4 5	5 9	5	5	6 4	4	5	5 5	5 5 5	8 7	7	10	7 7	7	5 5	7 1	2	2	2	2 3	6 6	6	6 7	10	21	22	25	21 2	22 22	15	17 17	18	19	19	17	19 1	9 16 18 1
	:	Stems per ACRE	485.6 930.8	3 1376	364.2 364	.2 60	7 566.6	566.6	688 445	.2 445.2 445.	2 364.2 364.2 849.	.8 404.7	404.7 13	485.	6 485.6	566.6	404.7 445.2 728.4	4 40.47 8	80.94 80	0.94 16	61.9 163	1.9 768.9	607 688	809.4	890.3 930.8	2509	435	489 9	00.4 49	5.7 556	5.4 556.4	344 40	4.7 404.7	320.4	374.3	374.3	1 <mark>04.7</mark> 51	9.3 519.	3 323.7 445.2 445

EEP Project Code 247. Project Name: Meredell Farm Table 9 Planted and Total Stem Counts (Species by Plot with Annual Means)

Meredell Farm (#247) Year 6 (22-Oct-2013 to 12-Nov-2013) Vegetation Plot Summary Information

	Riparian Buffer	Stream/ Wetland			Volunteers		Unknown Growth
Plot #	Stems ¹	Stems ²	Live Stakes	Invasives	3	Total ⁴	Form
0001	6	12	11	0	11	34	0
0002	8	9	0	0	6	15	0
0003	6	14	0	0	3	17	0
0004	7	11	0	0	0	11	0
0005	8	9	0	0	12	21	0
0006	9	10	0	0	24	34	0
0007	11	12	0	0	2	14	0
0008	7	10	1	0	7	18	0
0009	1	1	1	0	0	2	0
0010	4	4	0	0	15	19	0
0011	13	15	2	0	3	20	0
0012	n/a	22	1	10	39	52	0

Wetland/Stream Vegetation Totals (per acre)

		(per ue		
Plot #	Stream/ Wetland Stems ²	Volunteers 3	Total ⁴	Success Criteria Met?
0001	486	445	1376	Yes
0002	364	243	607	Yes
0003	567	121	688	Yes
0004	445	0	445	Yes
0005	364	486	850	Yes
0006	405	971	1376	Yes
0007	486	81	567	Yes
0008	405	283	728	Yes
0009	40	0	81	No
0010	162	607	769	No
0011	607	121	809	Yes
0012	890	1578	2104	Yes
Project Avg	435	411	867	

Ripari	an Buffer V	egetation To	tals
	(per a	cre)	
	Riparian	Success	
	Buffer	Criteria	
Plot #	Stems ¹	Met?	
0001	243	No	
0002	324	Yes	
0003	243	No	
0004	283	No	
0005	324	Yes	
0006	364	Yes	
0007	445	Yes	
0008	283	No	
0009	40	No	
0010	162	No	
0011	526	Yes	
0012	n/a	n/a	
Project Avg	294		

Stem Class Characteristics

 ¹Buffer Stems
 Native planted hardwood trees. Does NOT include shrubs. No pines. No vines.

 ²Stream/Wetland
 Stems

 Stems
 Native planted woody stems. Includes shrubs, does NOT include live stakes. No vines

 ³Volunteers
 Native woody stems. Not planted. No vines.

 ⁴Total
 Planted + volunteer native woody stems. Includes live stakes. Excl. exotics. Excl. vines.

 Meredell Farm
 Farm

EEP Project #247 January 2014

Scientific name	Common name	Size	EEP Merredell max 900
Acer barbatum	Southern Sugar Maple	1 gallon	70
Betula nigra	River Birch	1 gallon	449
Celtis laevigata	Sugar berry	1 gallon	385
Diospyros virginiana	Persimmon	1 gallon	422
Fraxinus pennsylvanica	Green ash	1 gallon	400
Liriodendron tulipifera	Tulip poplar	1 gallon	261
Nyssa biflora	Swamp Blackgum	1 gallon	370
Nyssa sylvatica	Black Gum	1 gallon	248
Platanus occidentalis	Sycamore	1 gallon	81
Populus deltoities	Cottonwood	1 gallon	4
Quercus michauxii	Swamp Chestnut Oak	1 gallon	200
Quercus nigra	Water Oak	1 gallon	175
Quercus pagoda	Cherrybark Oak	1 gallon	217
Quercus palustris	Pin Oak	1 gallon	343
Quercus phellos	Willow Oak	1 gallon	490
Quercus rubra	Northern Red Oak	1 gallon	262
Quercus shumardii	Shumard Oak	1 gallon	123
			4500
			4500
	3	85	100

Appendix D Stream Survey Data NOTE: No areas of significant stream instability were observed during the field survey. Survey monuments were not present in the field. Due to this and differences in surveying methodologies between monitoring year 5 and monitoring year 6, the longitudinal profile data may differ in some areas.

			Mere	edell Fa	Table arm St	10a.1 ream F	Baseli Restora	ne Str tion Si	eam D ite/247	ata Sui - Reac	mmary	, 1b (780) feet)												
Parameter	Gauge ²	Reg	jional C	urve		Pre-	Existin	g Cond	lition			Refer	ence R	each(es	s) Data			Design	l		Мс	nitorin	g Base	ine	
Dimension and Substrate - Riffle Only	1	LL	UL	Eq.	Min	Mean	Med	Max	SD ⁵	n	Min	Mean	Med	Max	SD ⁵	n	Min	Med	Max	Min	Mean	Med	Max	SD⁵	n
Bankfull Width (ft)					4.1	8.0	6.4	14.7	4.0	6								7.3							
Floodprone Width (ft)					6.0	25.5	17.0	59.0	20.0	6															
Bankfull Mean Depth (ft)					0.5	0.6	0.6	0.7	0.1	6								0.6							
¹ Bankfull Max Depth (ft)					0.8	0.9	0.9	1.1	0.1	6							0.7	0.8	0.9						
Bankfull Cross Sectional Area (ft ²))				2.6	4.6	3.8	8.3	2.2	6								4.5							
Width/Depth Ratio					5.7	14.0	11.8	26.2	7.4	6								12							
Entrenchment Ratio					1.3	3.3	2.5	6.9	2.3	6															
¹ Bank Height Ratio					1.1	3.0	3.4	4.6	1.5	6								1							
Profile	-	-			-						-						-			-					
Riffle Length (ft)						1				I	ľ	1								1					
Riffle Slope (ft/ft)					0.093			0.022									0.013	0.018	0.022						
Pool Length (ft)																									
Pool Max depth (ft)						2.4											1.2	1.5	1.8						
Pool Spacing (ft)					18			171									14.7	25.7	36.7						
Pattern																									
Channel Beltwidth (ft)			1	I	10	1	1	140	I		Γ	Ι	1	1	1	I	26	42.5	59	I	1	I	I	1	
Radius of Curvature (ft)					13			45									15	18.5	22						
Rc:Bankfull width (ft/ft)					1.6			5.6									2	2.5	3						
Meander Wavelength (ft)					80			400									51	66	81						
Meander Width Ratio					10			50.2									7	9	11						
Transport parameters																									
Reach Shear Stress (competency) lb/f	2						0.	.81										0.26							
Max part size (mm) mobilized at bankfull							5	50										50							
Stream Power (transport capacity) W/m ²	2																								
Additional Reach Parameters																									
Rosgen Classification						(G4, F4b,	E4b C4	b									C4							
Bankfull Velocity (fps)																									
Bankfull Discharge (cfs)																									
Valley length (ft)																									
Channel Thalweg length (ft)																									
Sinuosity (ft)							1	.2										1.4							
Water Surface Slope (Channel) (ft/ft)							0.0	258										0.011							
BF slope (ft/ft)																		0.0159							
³ Bankfull Floodplain Area (acres)																									
⁴ % of Reach with Eroding Banks																									
Channel Stability or Habitat Metric																									
Biological or Other																									

Shaded cells indicate that these will typically not be filled in.

1 = The distributions for these parameters can include information from both the cross-section surveys and the longitudinal profile. 2 = For projects with a proximal USGS gauge in-line with the project reach (added bankfull verification - rare).

3. Utilizing survey data produce an estimate of the bankfull floodplain area in acres, which should be the area from the top of bank to the toe of the terrace riser/slope.

4 = Proportion of reach exhibiting banks that are eroding based on the visual survey for comparison to monitoring data; 5. Of value/needed only if the n exceeds 3

			Mere	edell Fa	Table arm Sti	10a.2 ream F	Baseli estora	ne Str tion S	eam D ite/247	ata Su - Read	mmary	, 2b (294	4 feet)												
Parameter	Gauge ²	Reg	jional C	urve		Pre-	Existin	g Cond	ition			Refer	ence R	each(es	s) Data			Design	l		Мс	nitorin	g Basel	ine	
Dimension and Substrate - Riffle Only	1	LL	UL	Eq.	Min	Mean	Med	Max	SD⁵	n	Min	Mean	Med	Max	SD ⁵	n	Min	Med	Max	Min	Mean	Med	Max	SD⁵	n
Bankfull Width (ft)				1	4.9	6.6	6.8	8.1	1.3	4	1		1			1		7.3							
Floodprone Width (ft)					10.0	12.3	11.0	17.0	3.2	4	1														
Bankfull Mean Depth (ft)					0.4	0.6	0.5	0.8	0.2	4								0.6							
¹ Bankfull Max Depth (ft)					0.8	1.0	1.0	1.2	0.2	4	1						0.7	0.8	0.9						
Bankfull Cross Sectional Area (ft ²))				2.4	3.7	3.1	6.2	1.8	4								4.5							
Width/Depth Ratio					9.8	12.8	11.6	18.4	3.9	4								12							
Entrenchment Ratio)				1.6	1.9	1.9	2.3	0.3	4															
¹ Bank Height Ratio					2.2	2.6	2.3	3.7	0.7	4								1							
Profile	-	_			-						-						-			-					
Riffle Length (ft)																				I					
Riffle Slope (ft/ft)					0.009			0.225			1						0.016	0.021	0.027						
Pool Length (ft)											1														
Pool Max depth (ft)						1					1						1.2	1.5	1.8						
Pool Spacing (ft)					30			67									14.7	25.7	36.7						
Pattern																									
Channel Beltwidth (ft)					1	15				I	1	1					26	42.5	59		1				
Radius of Curvature (ft)					3			13			1						15	18.5	22						
Rc:Bankfull width (ft/ft)					0.4			1.9			1						2	2.5	3						
Meander Wavelength (ft)					60			95									51	66	81						
Meander Width Ratio					8.8			13.9			1						7	9	11						
Transport parameters		-									-									-					
Reach Shear Stress (competency) lb/f ²	2						0.5	565										0.439							
Max part size (mm) mobilized at bankfull							Sa	and										sand							
Stream Power (transport capacity) W/m ²	2						3	1.1										20.9							
Additional Reach Parameters																									
Rosgen Classification							B5	, E5										C4							
Bankfull Velocity (fps)							2	.9										3.1							
Bankfull Discharge (cfs)							1	13																	
Valley length (ft)																									
Channel Thalweg length (ft)																									
Sinuosity (ft)							1.	.12										1.2							
Water Surface Slope (Channel) (ft/ft)							0.0	321										0.0134							
BF slope (ft/ft)																		0.0166							
³ Bankfull Floodplain Area (acres)																									
⁴ % of Reach with Eroding Banks	6																								
Channel Stability or Habitat Metric																									
Biological or Other											1														

Shaded cells indicate that these will typically not be filled in.

1 = The distributions for these parameters can include information from both the cross-section surveys and the longitudinal profile. 2 = For projects with a proximal USGS gauge in-line with the project reach (added bankfull verification - rare).

3. Utilizing survey data produce an estimate of the bankfull floodplain area in acres, which should be the area from the top of bank to the toe of the terrace riser/slope.

4 = Proportion of reach exhibiting banks that are eroding based on the visual survey for comparison to monitoring data; 5. Of value/needed only if the n exceeds 3

					Mer	edell F	Table arm St	10a.3 ream l	Baseli Restora	ne Str ation S	eam D lite/247	ata Sui ′ - Rea	mmary ch: M1	(3200	feet)										
Parameter	Gauge ²	Reg	gional C	urve		Pre-	Existin	g Cond	ition			Refer	ence Re	each(es	s) Data			Design			Мс	nitorin	g Base	ine	
Dimension and Substrate - Riffle Only		LL	UL	Eq.	Min	Mean	Med	Max	SD⁵	n	Min	Mean	Med	Max	SD⁵	n	Min	Med	Max	Min	Mean	Med	Max	SD⁵	n
Bankfull Width (ft)					4.6	6.4	6.7	7.6	1.3	4								10.2							
Floodprone Width (ft)					6.0	10.0	10.5	13.0	2.9	4															
Bankfull Mean Depth (ft)					0.8	1.0	1.0	1.1	0.1	4								0.8							
¹ Bankfull Max Depth (ft)					1.2	1.3	1.4	1.4	0.1	4							1	1.15	1.3						
Bankfull Cross Sectional Area (ft ²)					3.7	7.0	7.4	9.4	2.5	4								8.6							
Width/Depth Ratio					5.8	6.8	6.7	7.9	0.9	4								12							
Entrenchment Ratio					1.2	1.5	1.5	1.9	0.3	4															
¹ Bank Height Ratio					2.8	3.0	2.9	3.4	0.3	4								1							
Profile	-	_			-						-						-			-					
Riffle Length (ft)											ľ	1								T					
Riffle Slope (ft/ft)																	0.016	0.021	0.026						
Pool Length (ft)																									
Pool Max depth (ft)																	1.7	2.1	2.5						
Pool Spacing (ft)																	20.3	35.55	50.8						
Pattern																									
Channel Beltwidth (ft)		[1		20	T	I	30	1		Γ	Ι	1	I	1	I	36	58.5	81	Γ	1	I	1	1	
Radius of Curvature (ft)					16			25									20	25	30						
Rc:Bankfull width (ft/ft)					2.5			3.9									2	2.5	3						
Meander Wavelength (ft)					70			170									71	91.5	112						
Meander Width Ratio					11			26.6									7	9	11						
Transport parameters																									
Reach Shear Stress (competency) lb/f ²	2						0.	61										0.54							
Max part size (mm) mobilized at bankfull							5	2										52							
Stream Power (transport capacity) W/m ²	2																								
Additional Reach Parameters																									
Rosgen Classification							G	4c																	
Bankfull Velocity (fps)																									
Bankfull Discharge (cfs)																									
Valley length (ft)																									
Channel Thalweg length (ft)																									
Sinuosity (ft)							1.	08																	
Water Surface Slope (Channel) (ft/ft)							0.0)13																	
BF slope (ft/ft)																									
³ Bankfull Floodplain Area (acres)																									
⁴ % of Reach with Eroding Banks																									
Channel Stability or Habitat Metric																									
Biological or Other																									

Shaded cells indicate that these will typically not be filled in.

1 = The distributions for these parameters can include information from both the cross-section surveys and the longitudinal profile. 2 = For projects with a proximal USGS gauge in-line with the project reach (added bankfull verification - rare).

3. Utilizing survey data produce an estimate of the bankfull floodplain area in acres, which should be the area from the top of bank to the toe of the terrace riser/slope.

4 = Proportion of reach exhibiting banks that are eroding based on the visual survey for comparison to monitoring data; 5. Of value/needed only if the n exceeds 3

Table 10b.1 Baseline Stream Data Summary (Substrate, Bed, Bank, and Hydrologic Containment Parameter Distributions) Meredell Farm Stream Restoration Site/247 - Reach: UT1b (780 feet)

Parameter	Pre	-Exis	ting C	ondit	ion		Refe	erence	Reac	h(es)	Data		[Desigr	า			As-bı	uilt/Ba	seline	•	
¹ Ri% / Ru% / P% / G% / S%																						
¹ SC% / Sa% / G% / C% / B% / Be%																						
¹ d16 / d35 / d50 / d84 / d95 / di ^p / di ^{sp} (mm	0.8	11.2	38.4	63.2		50																
² Entrenchment Class <1.5 / 1.5-1.99 / 2.0-4.9 / 5.0-9.9 / >10																						
³ Incision Class <1.2 / 1.2-1.49 / 1.5-1.99 / >2.0																						

Shaded cells indicate that these will typically not be filled in.

1 = Riffle, Run, Pool, Glide, Step; Silt/Clay, Sand, Gravel, Cobble, Boulder, Bedrock; dip = max pave, disp = max subpave

2 = Entrenchment Class - Assign/bin the reach footage into the classes indicated and provide the percentage of the total reach footage in each class in the table. This will result from the measured cross-sections as well as visual estimates

3 = Assign/bin the reach footage into the classes indicated and provide the percentage of the total reach footage in each class in the table. This will result from the measured cross-sections as well as the longitudinal profile

Footnotes 2,3 - These classes are loosley built around the Rosgen classification and hazard ranking breaks, but were adjusted slightly to make for easier assignment to somewhat coarser bins based on visual estimates in the field such that measurement of every segment for ER would not be necessary.

The intent here is to provide the reader/consumer of design and monitoring information with a good general sense of the extent of hydrologic containment in the pre-existing and the rehabilitated states as well as comparisons to the reference distributions.

ER and BHR have been addressed in prior submissions as a subsample (cross-sections as part of the design survey), however, these subsamples have often focused entirely on facilitating design without providing a thorough pre-constrution distribution of these parameters, leaving the reader/consumer with a sample that is weighted heavily on the stable sections of the read-. This means that the distributions for these parameters should include data from both the cross-sections and therefore can be readily integrated and provide and provide and provide sample distribution for these parameters, leaving the reader/consumer with a sample that is weighted heavily on the stable sections of an ore complex sample, the typical longitudinal profile and therefore can be readily integrated and provide and provide and an ore complex sample distribution for these parameters, thereby noviding the distribution/coverage necessary to provide meaningful comparisons.

Table 10b.2 Baseline Stream Data Summary (Substrate, Bed, Bank, and Hydrologic Containment Parameter Distributions) Meredell Farm Stream Restoration Site/247 - Reach: UT2b (294 feet)

Parameter	Pre	-Exis	ting C	ondit	ion		Refe	erence	Reac	h(es)	Data		[Desigr	า			As-bı	uilt/Ba	seline	•	
¹ Ri% / Ru% / P% / G% / S%																						
¹ SC% / Sa% / G% / C% / B% / Be%																						
¹ d16 / d35 / d50 / d84 / d95 / di ^p / di ^{sp} (mm	0.035	0.05	0.13	0.22		0.5																
² Entrenchment Class <1.5 / 1.5-1.99 / 2.0-4.9 / 5.0-9.9 / >10																						
³ Incision Class <1.2 / 1.2-1.49 / 1.5-1.99 / >2.0																						

Shaded cells indicate that these will typically not be filled in.

1 = Riffle, Run, Pool, Glide, Step; Silt/Clay, Sand, Gravel, Cobble, Boulder, Bedrock; dip = max pave, disp = max subpave

2 = Entrenchment Class - Assign/bin the reach footage into the classes indicated and provide the percentage of the total reach footage in each class in the table. This will result from the measured cross-sections as well as visual estimates

3 = Assign/bin the reach footage into the classes indicated and provide the percentage of the total reach footage in each class in the table. This will result from the measured cross-sections as well as the longitudinal profile

Footnotes 2,3 - These classes are loosley built around the Rosgen classification and hazard ranking breaks, but were adjusted slightly to make for easier assignment to somewhat coarser bins based on visual estimates in the field such that measurement of every segment for ER would not be necessary.

The intent here is to provide the reader/consumer of design and monitoring information with a good general sense of the extent of hydrologic containment in the pre-existing and the rehabilitated states as well as comparisons to the reference distributions.

ER and BHR have been addressed in prior submissions as a subsample (cross-sections as part of the design survey), however, these subsamples have often focused entirely on facilitating design without providing a thorough pre-constrution distribution of these parameters, leaving the reader/consumer with a sample that is weighted heavily on the stable sections of the read-. This means that the distributions for these parameters should include data from both the cross-sections and therefore can be readily integrated and provide and provide and provide sample distribution for these parameters, leaving the reader/consumer with a sample that is weighted heavily on the stable sections of an ore complex sample, the typical longitudinal profile and therefore can be readily integrated and provide and provide and an ore complex sample distribution for these parameters, thereby noviding the distribution/coverage necessary to provide meaningful comparisons.

Table 10b.3 Baseline Stream Data Summary (Substrate, Bed, Bank, and Hydrologic Containment Parameter Distributions) Meredell Farm Stream Restoration Site/247 - Reach: M1 (3200 feet)

Parameter	Pre	-Exis	ting C	Condit	ion		Refe	erence	Reac	h(es)	Data		0	Desigr	า			As-bı	uilt/Ba	seline	•	
¹ Ri% / Ru% / P% / G% / S%																						
¹ SC% / Sa% / G% / C% / B% / Be%																						
¹ d16 / d35 / d50 / d84 / d95 / di ^p / di ^{sp} (mm)	0.3	16.5	60.4	128		52																
² Entrenchment Class <1.5 / 1.5-1.99 / 2.0-4.9 / 5.0-9.9 / >10																						
³ Incision Class <1.2 / 1.2-1.49 / 1.5-1.99 / >2.0																						

Shaded cells indicate that these will typically not be filled in.

1 = Riffle, Run, Pool, Glide, Step; Silt/Clay, Sand, Gravel, Cobble, Boulder, Bedrock; dip = max pave, disp = max subpave

2 = Entrenchment Class - Assign/bin the reach footage into the classes indicated and provide the percentage of the total reach footage in each class in the table. This will result from the measured cross-sections as well as visual estimates

3 = Assign/bin the reach footage into the classes indicated and provide the percentage of the total reach footage in each class in the table. This will result from the measured cross-sections as well as the longitudinal profile

Footnotes 2,3 - These classes are loosley built around the Rosgen classification and hazard ranking breaks, but were adjusted slightly to make for easier assignment to somewhat coarser bins based on visual estimates in the field such that measurement of every segment for ER would not be necessary.

The intent here is to provide the reader/consumer of design and monitoring information with a good general sense of the extent of hydrologic containment in the pre-existing and the rehabilitated states as well as comparisons to the reference distributions.

ER and BHR have been addressed in prior submissions as a subsample (cross-sections as part of the design survey), however, these subsamples have often focused entirely on facilitating design without providing a thorough pre-constrution distribution of these parameters, leaving the reader/consumer with a sample that is weighted heavily on the stable sections of the read-. This means that the distributions for these parameters should include data from both the cross-sections and therefore can be readily integrated and provide and provide and provide sample distribution for these parameters, leaving the reader/consumer with a sample that is weighted heavily on the stable sections of an ore complex sample, the typical longitudinal profile and therefore can be readily integrated and provide and provide and an ore complex sample distribution for these parameters, thereby noviding the distribution/coverage necessary to provide meaningful comparisons.

Appendix E Hydrologic Data

	Tab Mere	le 11. Verification of Bankfull Events dell Farm Stream Restoration Site/247	
Date of Data Collection	Date of Occurrence	Method	Photo # (if available)
8/24/2010	N/A	*Crest Gage Reading: 1.96'	
10/20/2011	N/A	Crest Gage indicates BKF event	
3/26/2012	N/A	Wracklines indicate BKF event on UT1b	SP2 (MY5 report)
10/18/2012	N/A	*Crest Gage Reading: 1.17'	SP1 (MY5 report)
10/30/2013	N/A	*Crest Gage Reading: 3.6'	SP1
10/30/2013	N/A	Wracklines indicate BKF event on M1	SP2

*Design bankfull depth range for reach M1 is 1.0' to 1.3'. Crest gage readings occuring at, above, or within this range are recorded as bankfull indicators

SP1: Crest gage reading = 3.6' Taken: 10-30-2013

